Search results for "mutant p53"

showing 4 items of 4 documents

Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome

2020

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading …

0301 basic medicineBiopsyGeneral Physics and AstronomyGolgi ApparatusAnimals Biopsy Breast Neoplasms Cell Line Tumor Cell Transformation Neoplastic Female Fibroblasts Gene Expression Regulation Neoplastic Golgi Apparatus Humans Hypoxia-Inducible Factor 1 alpha Subunit Li-Fraumeni Syndrome Mice MicroRNAs Microtubules Mutation Primary Cell Culture Secretory Vesicles Signal TransductionSkin Tumor Microenvironment Tumor Suppressor Protein p53 Xenograft Model Antitumor Assays02 engineering and technologymedicine.disease_causeCell TransformationMicrotubulesSettore BIO/09 - FisiologiaMetastasisLi-Fraumeni SyndromeMiceTumor MicroenvironmentGolgisecretory machinerySuper-resolution microscopyAnimals; Biopsy; Breast Neoplasms; Cell Line Tumor; Cell Transformation Neoplastic; Female; Fibroblasts; Gene Expression Regulation Neoplastic; Golgi Apparatus; Humans; Hypoxia-Inducible Factor 1 alpha Subunit; Li-Fraumeni Syndrome; Mice; MicroRNAs; Microtubules; Mutation; Primary Cell Culture; Secretory Vesicles; Signal Transduction; Skin; Tumor Microenvironment; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assayslcsh:ScienceSkinMultidisciplinaryTumorChemistrymutant p53QCell migrationMicroRNASecretomics021001 nanoscience & nanotechnologyCell biologyGene Expression Regulation NeoplasticCell Transformation NeoplasticsymbolsFibroblastmiR-30dFemaleHypoxia-Inducible Factor 10210 nano-technologyBreast NeoplasmHumanSignal TransductionCancer microenvironmentStromal cellSecretory VesicleSciencePrimary Cell CultureBreast NeoplasmsMicrotubuleGolgi ApparatuSettore MED/08 - Anatomia Patologicaalpha SubunitGeneral Biochemistry Genetics and Molecular BiologyArticleCell Line03 medical and health sciencessymbols.namesakeCell Line TumormedicineAnimalsHumansSettore MED/05 - Patologia ClinicaSecretionTumor microenvironmentNeoplasticAnimalSecretory VesiclesGeneral ChemistryOncogenesGolgi apparatusHDAC6FibroblastsMicroreviewHypoxia-Inducible Factor 1 alpha SubunitmicroenvironmentXenograft Model Antitumor AssaysMicroRNAs030104 developmental biologyGene Expression RegulationMutationlcsh:QTumor Suppressor Protein p53Carcinogenesis
researchProduct

The Role of p53 Signaling in Colorectal Cancer.

2021

Simple Summary The transcription factor p53 is a crucial tumor suppressor that regulates diverse cellular responses to protect against cancer development. Deactivating p53 signaling either by altering p53 regulators or by p53 mutations occurs frequently in human colorectal carcinoma (CRC). Forty-three percent of CRCs harbor p53 mutations that reduce wild-type p53 tumor suppressor activity and often provide neo-morphic functions, which contribute to tumorigenesis. In this review, we summarize wild-type p53 signaling, how it can be deregulated in CRC, and the functional and phenotypical effects of p53 mutations. We also discuss current therapeutic strategies of targeting p53. Abstract The tra…

0301 basic medicinewild type p53Cancer ResearchDNA repairCellular differentiationcolorectal cancerReview03 medical and health sciences0302 clinical medicinemedicineTranscription factorRC254-282gain-of-functionbiologyCell growthmutant p53CancerNeoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseUbiquitin ligasep53 signaling030104 developmental biologyOncology030220 oncology & carcinogenesisCancer cellbiology.proteinCancer researchMdm2cancer therapyp53 pathwayCancers
researchProduct

Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells

2014

Osteosarcoma is a highly metastatic tumor affecting adolescents, for which there is no second-line chemotherapy. As suggested for most tumors, its capability to overgrow is probably driven by cancer stem cells (CSCs), and finding new targets to kill CSCs may be critical for improving patient survival. TP53 is the most frequently mutated tumor suppressor gene in cancers and mutant p53 protein (mutp53) can acquire gain of function (GOF) strongly contributing to malignancy. Studies thus far have not shown p53-GOF in osteosarcoma. Here, we investigated TP53 gene status/role in 3AB-OS cells-a highly aggressive CSC line previously selected from human osteosarcoma MG63 cells-to evaluate its involv…

HistologyTumor suppressor genePhysiologyEndocrinology Diabetes and MetabolismApoptosisIn situ hybridizationBiologyTNF-Related Apoptosis-Inducing LigandCell MovementCancer stem cellCell Line TumorSettore BIO/10 - BiochimicaBiomarkers TumormedicineHumansNeoplasm Invasiveness3AB-OS cells CSCs Cancer cell dedifferentiation Cancer stem cells FISH Fluorescent in situ hybridization GOF Gain of function Human osteosarcoma MMPs Matrix metalloproteinases Mutant p53 Mutant p53 gain of function Mutp53 OS OsteosarcomaClonogenic assayTumor Stem Cell AssayCell ProliferationMembrane Potential MitochondrialOsteosarcomaCancerReceptors Death DomainCell DedifferentiationCell cyclemedicine.diseaseMolecular biologyAmino Acid SubstitutionProto-Oncogene Proteins c-bcl-2Gene Knockdown TechniquesMutationNeoplastic Stem CellsCancer researchOsteosarcomaEctopic expressionTumor Suppressor Protein p53Bone
researchProduct

STUDY ON P53 GAIN OF FUNCTION IN 3AB-OS CANCER STEM CELLS

OSTEOSARCOMAMUTANT P53; STEMNESS; CANCER; OSTEOSARCOMA; CANCER STEM CELLS.STEMNESSCANCER STEM CELLS.CANCERMUTANT P53
researchProduct